

Review Paper:

Comparative Phytochemical Analysis of Wild Vs. Cultivated Medicinal Plants: Implications for Bioactivity

Pammi Sravanthi S.S.Department of Botany, SVR Government Degree College, Nidadavole, E.G. Dt., A.P., 534301, INDIA
pammisravanthi@gmail.com**Abstract**

Medicinal plants have been at the forefront of both traditional remedies and modern drug discovery. The shift from wild harvesting to cultivation has raised concerns regarding the consistency and potency of phytochemicals. They have long served as a cornerstone of traditional healing systems and modern pharmacological research due to their rich reservoir of bioactive compounds, especially secondary metabolites such as alkaloids, flavonoids, phenolics and terpenoids. However, the concentration and diversity of these phytochemicals can vary significantly depending on whether the plants are wild or cultivated.

This study undertakes a comparative analysis of the phytochemical composition and associated bioactivities of selected wild and cultivated medicinal plant species to better understand how ecological and agronomic factors influence their therapeutic potential. By integrating analytical techniques, case studies, graphs and emerging strategies, we emphasize the need for sustainable cultivation practices that maintain the medicinal value of plant-based therapeutics and call for a balanced and sustainable approach that preserves the bioactive richness of wild species while enhancing the medicinal potential of cultivated ones through informed cultivation and conservation practices.

Keywords: Phytochemicals, wild medicinal plants, cultivated plants, secondary metabolites, GC-MS, bioactivity, antioxidant, medicinal plant cultivation.

Introduction

Medicinal plants have long been recognized as vital sources of therapeutic agents, playing a crucial role in both traditional and modern medicine systems. Phytochemicals, or secondary metabolites, are plant-derived compounds that play crucial roles in defense mechanisms and therapeutic applications. Their curative properties are primarily attributed to a diverse array of secondary metabolites such as alkaloids, flavonoids, phenolics, tannins, saponins, terpenoids and glycosides collectively referred to as phytochemicals⁵⁷. These bioactive compounds exhibit a wide range of pharmacological activities including antioxidant, anti-inflammatory, antimicrobial, anticancer and immunomodulatory effects¹⁷. Metabolic fingerprinting

of root, stem and leaf extracts of *Phyllanthus amarus* for their bioactive compounds was evaluated by Pammi et al⁵⁶ 2016 and they are evaluated for their antioxidant activity.

The qualitative and quantitative profiles of these phytochemicals can vary significantly depending on various biotic and abiotic factors, including the plant's genetic makeup, growing environment and cultivation practices. While wild medicinal plants grow naturally and are often exposed to various environmental stresses, cultivated varieties are grown under more controlled agricultural conditions. The increasing global demand for herbal medicines has prompted the cultivation of many medicinal plant species. Concerns also arise regarding the authenticity, potency and effectiveness of cultivated plants compared to their wild counterparts.

One of the most compelling comparisons in phytochemical research lies between wild and cultivated medicinal plant species. Wild plants, which grow in natural and often stress-prone environments, are subjected to various ecological pressures such as competition, herbivory, drought and nutrient limitations. These stressors stimulate the biosynthesis of secondary metabolites as part of the plant's adaptive defense mechanisms^{29,30}.

In contrast, cultivated plants are generally grown under controlled or optimized agricultural conditions with better access to nutrients, irrigation and protection from pests and diseases. While this may enhance biomass yield, it may not necessarily promote the same level of secondary metabolite production observed in their wild counterparts⁴¹. Several studies suggest that wild medicinal plants tend to have higher concentrations and a broader spectrum of phytochemicals compared to their cultivated equivalents. This leads to enhanced bioactivity, making wild species more potent for pharmacological applications⁶¹.

On the other hand, cultivated plants offer advantages such as accessibility, sustainability and standardization in herbal drug production, which are critical for commercial exploitation and biodiversity conservation¹¹. Given the increasing global demand for herbal products and the growing interest in plant-based health interventions, it is essential to understand how cultivation impacts the medicinal value of plants.

A comparative phytochemical analysis between wild and cultivated forms can not only shed light on their respective therapeutic potentials but also can inform strategies for

sustainable harvesting, conservation and improved cultivation practices that do not compromise medicinal efficacy.

This study, therefore, aims to investigate and to compare the phytochemical profiles of selected wild and cultivated medicinal plant species, to evaluate their relative bioactivities and to explore the implications of these differences in terms of medicinal quality, efficacy and usage. The findings are expected to contribute valuable insights into the optimization of cultivation strategies for maximizing therapeutic benefits while promoting the sustainable use of plant resources.

Factors influencing Phytochemical Variation

Phytochemicals, the secondary metabolites produced by plants, are highly responsive to both ecological stimuli and internal physiological conditions. These compounds, unlike primary metabolites required for basic metabolic processes, are vital for plant defense, adaptation and ecological interactions¹⁰³. The content and composition of phytochemicals are not uniform but vary depending on a complex interaction of genetic, environmental, agronomic and ecological factors²⁶. Understanding these factors is crucial for explaining the differences in bioactivity and therapeutic value observed between wild and cultivated medicinal plants.

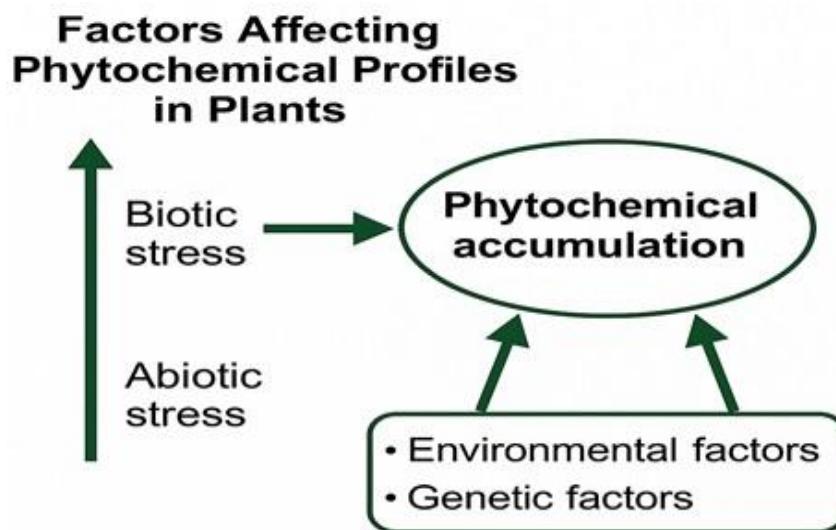
Genetic Factors: One of the primary determinants of phytochemical variation is the plant's genetic background. The genetic constitution governs the biosynthetic pathways for specific secondary metabolites. Wild plants typically possess higher genetic diversity than cultivated varieties which are often selectively bred for agronomic traits such as yield, pest resistance, or uniformity. This selective breeding may inadvertently reduce the range or concentration of certain phytochemicals, whereas wild genotypes tend to maintain a broader chemical spectrum due to evolutionary adaptations to natural stressors¹⁰.

Environmental Conditions: Environmental conditions play a significant role in modulating phytochemical production. Factors such as light intensity, temperature, altitude, soil type and water availability all exert influence on secondary metabolite synthesis¹⁶. For instance, high light intensity and ultraviolet radiation, especially prevalent at higher altitudes, have been shown to stimulate the accumulation of flavonoids and phenolic compounds as protective mechanisms. Temperature fluctuations also affect enzymatic activities that regulate metabolic pathways.

Furthermore, soil nutrient composition, particularly in terms of pH, organic matter and microelement content, affects phytochemical expression. Nutrient-deficient soils can induce stress responses that upregulate secondary metabolism³⁸. Water stress or drought conditions can similarly lead to an increase in osmoprotective compounds like alkaloids, tannins and proline, with wild species often

better adapted to accumulate these in response to arid conditions⁷⁸.

Biotic Stress and Plant-Plant Interactions: Biotic stresses such as herbivore attacks, pathogen infection and interplant competition are also potent triggers for secondary metabolite production. In natural habitats, wild plants are continuously exposed to such biotic challenges and have evolved to synthesize elevated levels of defensive compounds such as alkaloids, terpenoids and polyphenols. In contrast, cultivated plants are usually grown under controlled conditions with pesticides and physical protection, reducing their need to produce such compounds^{97,103}.


Agronomic Practices: Agronomic practices further influence phytochemical profiles in cultivated plants. Fertilization, irrigation, pruning and the use of growth regulators can modify secondary metabolite content. While high fertilization promotes vegetative growth, it can result in a dilution effect where phytochemical concentrations decrease. In contrast, controlled nutrient stress has been shown to enhance the biosynthesis of certain bioactive compounds¹¹⁰. The timing of harvest is also crucial, as different compounds reach their peak concentrations at specific growth stages such as flowering or fruiting^{75,76}. Additionally, post-harvest handling, including drying methods and storage conditions, significantly impacts the preservation of phytochemicals. Improper storage can lead to degradation of heat-sensitive or volatile compounds¹⁰⁰.

Seasonal and Phenological Variation: Seasonal and phenological variations contribute to fluctuations in phytochemical levels. The production of many secondary metabolites is synchronized with the plant's developmental cycle. Wild plants, subjected to natural seasonal changes, often exhibit greater variability in metabolite concentrations compared to cultivated species, which are managed under more stable and predictable growing conditions¹⁶.

Altitude and Geographic Origin: Finally, altitude and geographic origin are influential in shaping phytochemical profiles. Plants growing at higher altitudes face environmental extremes such as intense UV radiation, low atmospheric pressure and cold temperatures, which promote the synthesis of stress-protective compounds like anthocyanins and flavonoids⁸⁰⁻⁸². Geographic location determines the plant's ecological niche, soil microbiome and local climate all of which contribute to unique chemotypic expressions¹⁰. Hence, phytochemical variation is governed by an intricate network of genetic, environmental, biotic and anthropogenic factors. These elements, acting individually or synergistically, contribute to the distinct phytochemical signatures seen in wild and cultivated medicinal plants (Fig. 1). A deep understanding of these influences is essential for accurate phytochemical evaluation, quality control of herbal products and for devising cultivation strategies aimed at maximizing therapeutic value. Table 1 summarizes the main factors that influence phytochemical expression.

Table 1
Factors influencing Phytochemical Expression in Medicinal Plants

Factor	Influence on Phytochemical Profile	Explanation & Examples
Soil Nutrients	Affects synthesis of alkaloids, flavonoids and phenolic compounds	High nitrogen promotes alkaloid biosynthesis, while phosphorus and potassium enhance flavonoid and phenolic accumulation ⁹⁶ .
Light Intensity	Enhances terpenoid and flavonoid accumulation	UV-B radiation triggers flavonoid biosynthesis as a protective response ⁴⁸ .
Water Availability	Drought stress triggers secondary metabolite (SM) production	Water scarcity increases antioxidant phenolics, proline and flavonoids to cope with oxidative stress ⁵² .
Genetic Variability	Wild populations retain diverse alleles responsible for SM biosynthesis	Genetic variation explains enhanced phytochemical diversity in wild <i>Phyllanthus</i> and <i>Curcuma</i> species ^{29,30,41} .
Agronomic Practices	Fertilizer and irrigation may reduce SM concentration through dilution	High-input cultivation often dilutes active compounds, especially in essential oil crops like <i>Ocimum basilicum</i> ⁶¹⁻⁶⁴ .
Altitude and Climate	Elevation and temperature influence specific SM pathways	High-altitude plants like <i>Artemisia</i> show elevated levels of terpenoids and phenolics ^{106,107} .
Biotic Stress	Herbivory and pathogens upregulate defensive metabolites	Jasmonic acid-mediated responses lead to increased tannins and alkaloids under insect attack ⁶⁹ .
Plant Age and Maturity	Developmental stage alters phytochemical composition	Secondary metabolites like ginsenosides or saponins vary with maturity, especially in <i>Panax</i> species ^{2,3} .

Figure 1: Factors affecting Phytochemical Profiles in Plants

This line diagram illustrates how various biotic and abiotic stress factors influence the biosynthesis of phytochemicals in both wild and cultivated medicinal plants. Abiotic stressors include drought, temperature extremes, salinity, UV radiation and nutrient deficiency. Such stresses stimulate the plant's defense mechanisms, leading to enhanced production of secondary metabolites like phenolics, flavonoids and alkaloids. Biotic stressors include insect herbivory, pathogen attacks and microbial interactions also trigger phytochemical accumulation as a protective response.

The diagram of plant response pathway shows arrows from stress factors pointing toward metabolic pathways in plant cells, which upregulate specific biosynthetic routes such as

the phenylpropanoid pathway or terpene synthesis, resulting in increased phytochemical content. Wild plants experience more frequent and intense natural stress, typically resulting in higher levels of secondary metabolites compared to cultivated ones grown under controlled and less stressful conditions.

Analytical Methods for Phytochemical Comparison

Accurate and reliable comparison of phytochemical profiles between wild and cultivated medicinal plants necessitates the use of robust analytical techniques. These methods serve to identify, quantify and characterize the vast array of secondary metabolites responsible for the therapeutic properties of medicinal plants (Fig. 2). A combination of

qualitative and quantitative assays is often employed to provide a comprehensive understanding of phytochemical diversity, concentration and potential bioactivity. The selection of appropriate analytical techniques depends on the type of phytochemicals being studied, their solubility, volatility and stability, as well as the objective of the study^{39,58}.

Preliminary Qualitative Phytochemical Screening: This is often the initial step in phytochemical evaluation, aimed at detecting the presence or absence of various classes of compounds such as alkaloids, flavonoids, phenolics, tannins, saponins and terpenoids. For instance, alkaloids can be identified using Mayer's and Wagner's reagents, flavonoids through Shinoda and alkaline reagent tests and phenolics with ferric chloride or lead acetate. Saponins are usually tested using the froth test and terpenoids by the Salkowski reaction. These tests are simple, cost-effective and provide a basic comparative understanding of the phytochemical presence across different plant samples³⁷.

Quantitative Estimation of Major Phytochemicals: Quantitative assays are essential for determining the concentration of specific secondary metabolites. Total phenolic content (TPC) is commonly measured using the Folin–Ciocalteu reagent and expressed in gallic acid equivalents (GAE), whereas total flavonoid content (TFC) is estimated via the aluminum chloride colorimetric method and reported in quercetin equivalents (QE). Similarly, total tannin content (TTC) is assessed using methods such as Folin–Denis or vanillin-HCl assays. Saponins and alkaloids can be quantified either gravimetrically or spectrophotometrically following specific extraction and precipitation steps. These estimations are crucial for evaluating differences in metabolite abundance between wild and cultivated specimens^{77,87}.

Chromatographic Techniques: Chromatography plays a central role in separating and identifying individual phytochemicals from complex plant matrices. Thin layer chromatography (TLC) provides a rapid and economical method for fingerprinting, whereas High-Performance Liquid Chromatography (HPLC) is widely adopted for precise quantification of flavonoids, phenolics and alkaloids with high resolution and sensitivity. Gas Chromatography–Mass Spectrometry (GC-MS) is particularly suitable for volatile constituents like essential oils and terpenoids and offers compound identification based on retention times and mass spectra. Advanced tools like Ultra-Performance Liquid Chromatography (UPLC) and High-Performance Thin Layer Chromatography (HPTLC) allow faster and more detailed profiling of phytochemicals, thus facilitating better differentiation between wild and cultivated plant extracts^{15,24,79} (Fig. 5).

Spectroscopic and Spectrometric Techniques: Spectroscopic techniques provide valuable insights into compound structure and functional groups. UV-Visible

spectrophotometry is frequently used in phenolic and flavonoid estimation and enzyme inhibition studies. Fourier Transform Infrared Spectroscopy (FTIR) identifies functional groups and helps in characterizing crude extracts. Nuclear Magnetic Resonance (NMR) spectroscopy is critical for structural elucidation of isolated phytochemicals, while Mass Spectrometry (MS), often combined with chromatographic separation (e.g. LC-MS, GC-MS), provides molecular weights and fragmentation data, enabling accurate compound identification^{84,104}.

Chemometric and Data Analysis Tools: The data generated from advanced analytical techniques can be highly complex and multidimensional. Chemometric tools such as Principal Component Analysis (PCA), Cluster Analysis (CA) and Discriminant Analysis (DA) are used to analyze variations and identify significant patterns or groupings based on phytochemical content. These methods allow researchers to distinguish between wild and cultivated samples based on their chemical composition and identify biomarkers responsible for specific bioactivities^{5,46}.

Bioassays for Functional Correlation: While not purely analytical, functional bioassays such as DPPH, ABTS and FRAP for antioxidant activity or antimicrobial and enzyme inhibition tests are essential for establishing a link between phytochemical profiles and biological efficacy. These bioassays validate the therapeutic relevance of identified phytochemicals and support the conclusion that higher phytochemical content often correlates with stronger bioactivity in wild plant variants^{6,72}.

Multifaceted analytical approach encompassing preliminary screening, quantification, separation, identification and biological validation is essential for a thorough comparison of phytochemicals in wild versus cultivated medicinal plants. The integration of classical biochemical methods with modern chromatographic, spectroscopic and statistical tools enables the development of comprehensive phytochemical profiles (Table 2). These insights are vital for understanding the bioefficacy of medicinal plants and for guiding conservation and cultivation strategies.

The diagram visually categorizes the major analytical techniques employed in evaluating plant phytochemicals and their corresponding functions. It arranges the tools across a gradient from wild to cultivated plant sources, indicating their application along this continuum. On the wild plant end, GC-MS (Gas Chromatography–Mass Spectrometry) is predominantly used for detecting volatile compounds, especially terpenes, which are abundant in wild species due to their adaptation to environmental stressors.

Moving toward the center, HPLC (High-Performance Liquid Chromatography) offers rapid assessment and is applied to quantify and analyze a variety of flavonoids, alkaloids and phenolic compounds which are central to antioxidant activity comparisons between wild and cultivated plants.

UV-Visible spectroscopy (UV-Vis) is employed for structural elucidation of antioxidant-related compounds, especially in assessing antioxidant capacity within crude extracts. On the cultivated plant side of the spectrum, NMR (Nuclear Magnetic Resonance) spectroscopy is primarily utilized for identifying functional metabolites and functional groups, offering a detailed view of the chemical structure and metabolic makeup of compounds within cultivated specimens. The gradient-based representation highlights how different analytical tools are suited to the unique

chemical compositions found in wild versus cultivated plants, thereby supporting comprehensive phytochemical profiling.

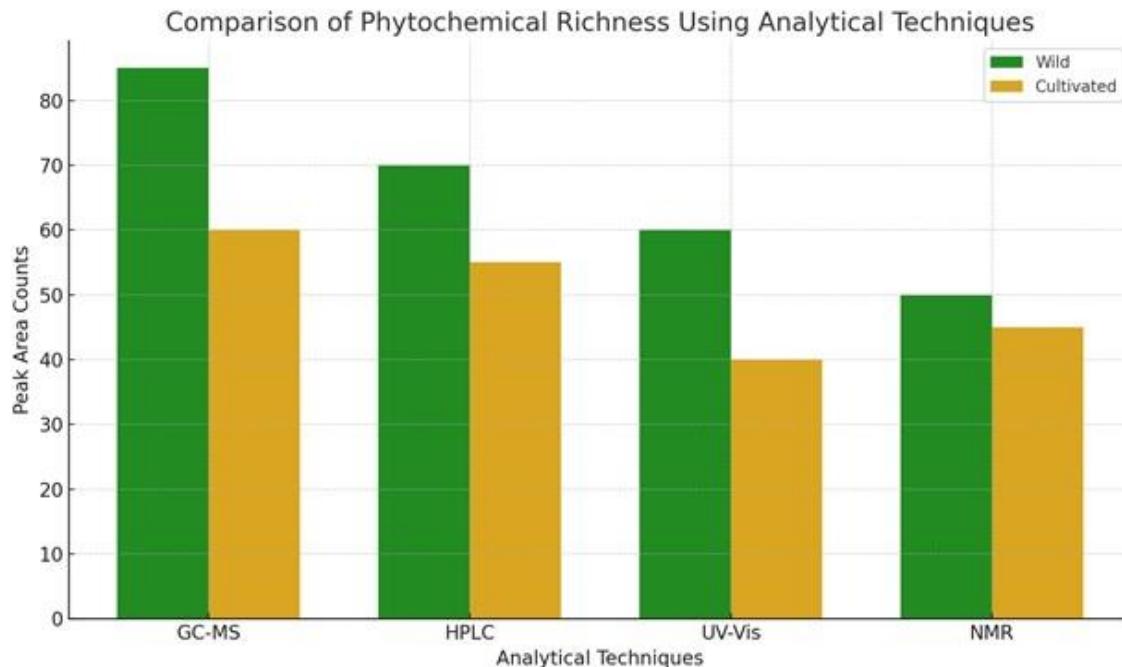

GC-MS (Gas Chromatography-Mass Spectrometry) recorded the highest peak area count for wild species (~87 units), significantly exceeding the cultivated variants (~60 units). GC-MS is especially sensitive to volatile and semi-volatile compounds, making it ideal for detecting complex secondary metabolites typically abundant in wild plants⁴⁴.

Table 2
Analytical Techniques used in Phytochemical and Bioactivity Studies of Medicinal Plants

Analytical Method	Purpose	Example Compounds/ Uses	Benefits
Qualitative Screening	Preliminary detection of phytochemical classes	Alkaloids, flavonoids, tannins, saponins	Quick and cost-effective for preliminary profiling ^{22,40}
Folin-Ciocalteu (TPC)	Estimation of total phenolic content	Gallic acid equivalents	Simple, sensitive, widely used for antioxidant potential ⁸⁷
Aluminum Chloride Assay (TFC)	Estimation of total flavonoid content	Quercetin equivalents	Reliable for flavonoid quantification ⁹
Vanillin-HCl / Folin-Denis	Estimation of tannins	Tannin content comparison	Useful in assessing astringent medicinal plants ⁶⁷
TLC (Thin Layer Chromatography)	Phytochemical fingerprinting and quick comparison	Visual profiling of extracts	Rapid, inexpensive, requires minimal equipment ⁹⁹
HPLC (High-Performance LC)	Separation and quantification of individual compounds	Flavonoids, phenolic acids, alkaloids	High resolution, reproducibility, widely applicable ¹³
UPLC (Ultra Performance LC)	Faster, more sensitive alternative to HPLC	Complex plant extract analysis	Greater sensitivity, faster analysis time ⁹¹
GC-MS (Gas Chromatography-MS)	Identification of volatile/thermally stable compounds	Essential oils, terpenes	Specific and sensitive for volatiles ⁸³
HPTLC (High Performance TLC)	Semi-quantitative fingerprinting	Chemoprofiling of extracts	Improved resolution and quantification over classical TLC ⁷³
UV-Visible Spectrophotometry	Compound quantification, enzyme inhibition, antioxidant assays	DPPH, FRAP, ABTS assays	Widely accessible, simple, suitable for antioxidant screening ⁶⁸
FTIR (Fourier Transform Infrared)	Functional group analysis	Compound classification in crude extracts	Identifies chemical bonds, rapid characterization ⁸⁹
NMR Spectroscopy	Structure elucidation of isolated phytochemicals	Alkaloids, glycosides	Detailed structural information ⁶⁵
Mass Spectrometry (MS)	Molecular weight determination, fragmentation analysis	Unknown compound characterization	Accurate mass determination, structural clues ²¹
Chemometric Tools (PCA, CA, DA)	Multivariate analysis of chemical data, clustering	Differentiating wild vs. cultivated samples	Handles large datasets, improves interpretation ⁷
Bioactivity Assays	Correlation of phytochemical profile with biological activity	Antioxidant, antimicrobial, enzyme inhibition	Functional relevance, connects chemistry to pharmacology ¹²

Figure 2: Spectrum of Analytical Tools used in Phytochemical Profiling

Figure 3: Comparison of Phytochemical Richness using Analytical Techniques

HPLC results show a moderate difference, with wild plants exhibiting 70 peak area counts compared to 55 for cultivated ones. This technique excels at profiling non-volatile compounds such as flavonoids, phenolics and glycosides, compounds often enriched under natural environmental stressors in wild plants⁶¹.

In the case of UV-Vis spectrophotometry, the wild plants again show a higher bioactive content (~60) relative to cultivated ones (~40). UV-Vis is commonly employed for total phenolics and flavonoids estimation and its results here reflect the trend that wild species accumulate more of these compounds⁴⁷. NMR (Nuclear Magnetic Resonance) shows the least difference, with peak areas of 50 (wild) vs. 45

(cultivated). While NMR provides detailed structural information about metabolites, its lower sensitivity might explain the closer values. Nevertheless, it still affirms the higher metabolite diversity in wild species.

It can be now interpreted that across all techniques, wild species consistently show higher phytochemical richness indicating that their exposure to natural stressors may upregulate secondary metabolite biosynthesis⁸⁰⁻⁸². Cultivated plants, grown under controlled, less stressful conditions, may not exhibit the same level of metabolic diversity. The comparison underscores the importance of selecting wild genotypes for pharmaceutical and nutraceutical applications and it also suggests that multiple

analytical platforms are needed to fully assess metabolomic complexity

Comparative Bioactivity of Wild vs. Cultivated Plants

The bioactivity of medicinal plants defined as their ability to exert biological or pharmacological effects is intrinsically linked to the concentration, diversity and synergy of their phytochemical constituents (Table 3). Understanding how wild and cultivated variants of the same plant species differ in bioactivity is essential for evaluating their therapeutic efficacy, guiding cultivation practices and standardizing herbal formulations¹⁸.

Wild medicinal plants, growing under natural ecological conditions, are exposed to a variety of environmental stressors such as drought, UV radiation, poor soil nutrients, herbivore pressure and microbial interactions. These biotic and abiotic stresses stimulate the plant's secondary metabolism, leading to enhanced synthesis of bioactive compounds such as alkaloids, flavonoids, phenolics, terpenoids and saponins⁹² (Fig. 5). This stress-induced phytochemical enrichment often results in greater pharmacological potency, making wild plants a valuable source of potent medicinal agents⁵¹ (Table 5).

In contrast, cultivated medicinal plants are typically grown under controlled agricultural conditions where stress is minimized through irrigation, fertilization and pest control. While such conditions promote better growth and yield consistency, they may not stimulate the same level of secondary metabolite production. Consequently, cultivated plants might exhibit reduced or altered bioactivity in comparison to their wild counterparts³⁶. However, cultivation enables standardization of active ingredients, traceability and quality control factors critical for pharmaceutical and nutraceutical applications.

Antioxidant Activity: Antioxidant potential is one of the most widely assessed bioactivities in phytochemical research, given its relevance to mitigating oxidative stress-related diseases. Studies often report that wild plants demonstrate significantly stronger antioxidant activity due to their elevated levels of phenolic and flavonoid compounds³³ (Fig. 4). This has been demonstrated using assays such as DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) and FRAP (Ferric Reducing Antioxidant Power), which are commonly used to compare antioxidant capacities across plant samples.

Antimicrobial and Antifungal Activity: Another important aspect of bioactivity is the antimicrobial efficacy of plant extracts. Comparative studies have shown that wild plants typically possess broader and more potent antimicrobial spectra against bacterial and fungal pathogens than cultivated ones⁷⁷. Analysis of bioactive compounds and antimicrobial screening of *Phyllanthus amarus* was studied

by Pammi et al⁵⁶. This is largely due to the higher diversity and concentration of antimicrobial phytochemicals such as tannins, alkaloids and essential oils found in wild plant specimens. Methods like agar well diffusion, minimum inhibitory concentration (MIC) and zone of inhibition (ZOI) are standard for quantifying antimicrobial potential.

Anti-inflammatory and Analgesic Properties: Wild plant species often display enhanced anti-inflammatory effects, attributed to their higher content of bioactive flavonoids, triterpenoids and phenolic acids. These compounds are known to modulate inflammatory pathways by inhibiting the release of pro-inflammatory mediators like cytokines and prostaglandins¹⁰⁵. In contrast, cultivated plants, especially those grown under stress-free conditions, may not express these compounds at pharmacologically significant levels.

Cytotoxic and Anticancer Activities: Cytotoxicity and anticancer potential are among the most sought-after therapeutic properties of medicinal plants. Wild species have been shown to exert stronger antiproliferative effects on cancer cell lines, likely due to the accumulation of defensive secondary metabolites like sesquiterpene lactones, steroidal saponins and anthraquinones³². These compounds are often synthesized in response to environmental stressors and are less abundant in cultivated plants unless induced artificially.

Enzyme Inhibition Studies: Medicinal plants are also evaluated for their potential to inhibit disease-related enzymes. Phytochemicals capable of inhibiting α -amylase and α -glucosidase have relevance in diabetes management while those targeting acetylcholinesterase are investigated for potential Alzheimer's treatments. Wild plants frequently outperform cultivated ones in enzyme inhibition assays, again pointing to their richer bioactive profiles²⁵.

Synergistic Effects and Compound Complexity: A key contributor to the superior bioactivity of wild plants is the synergistic interaction between complex array of phytochemicals. These synergies enhance therapeutic effects, making wild plants particularly valuable in traditional polyherbal formulations. The more diverse phytochemical matrix found in wild plants often leads to broader spectrum activity, improved bioavailability and better overall efficacy⁵⁷.

Limitations and Considerations: Despite the advantages of wild plants in terms of bioactivity, they come with certain limitations. Phytochemical composition in wild populations is highly variable due to ecological, seasonal and genetic influences, making standardization difficult. On the other hand, cultivated plants allow for reproducible bioactive content and modern techniques such as elicitor application, controlled stress induction and metabolic engineering, now being employed to enhance their phytochemical richness⁴. Thus, future strategies should aim to balance the benefits of wild and cultivated sources by conserving wild germplasm and optimizing cultivated systems through biotechnology.

Table 3
Comparative Bioactivity of Wild vs. Cultivated Medicinal Plants

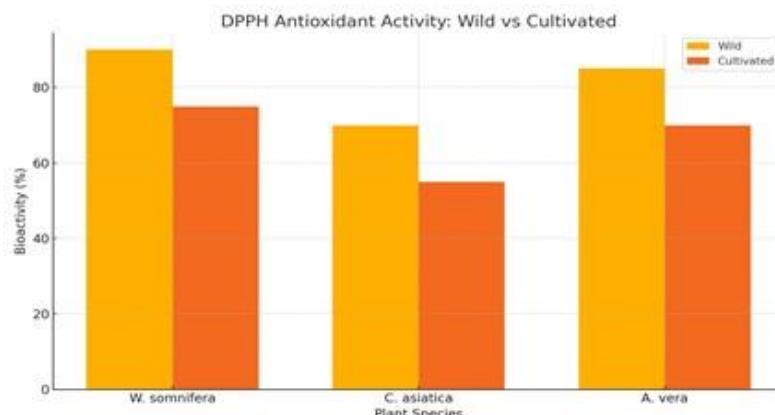
Bioactivity Type	Wild Plants	Cultivated Plants	Common Assays Used
Antioxidant Activity	Higher due to stress-induced phenolics and flavonoids ³⁴	Moderate due to low-stress growth ³¹	DPPH, ABTS, FRAP
Antimicrobial Activity	Broad and potent due to diverse secondary metabolites ⁶⁶	Narrower due to controlled growth ⁴⁹	Agar diffusion, MIC, ZOI
Anti-inflammatory	High due to elevated triterpenoids and flavonoids ⁶³	Lower unless stress-induced ^{106,107}	COX inhibition, protein denaturation
Cytotoxic/Anticancer	Notable due to defensive compounds like lactones ⁵⁰	Variable, often lower ⁷⁴	MTT assay, Cell viability assays
Enzyme Inhibition	Strong inhibition (e.g. α -amylase, AChE) ⁵³	Moderate or genetically engineered ¹⁰⁹	Enzymatic inhibition assays
Synergistic Effects	Greater complexity, multi-target therapy ⁷¹	Simpler profiles with fewer synergistic interactions	Bioassays with extract fractions

Table 4
Visual Comparison of Bioactivities between Wild and Cultivated Medicinal Plants

Bioactivity	Wild Plants	Cultivated Plants
Antioxidant Activity	High (due to increased stress-induced phenolics/flavonoids) ³⁴	Moderate (reduced stress, lower phytochemical accumulation) ³¹
Antimicrobial/Antifungal	Strong and broad-spectrum due to complex SM profile ⁶⁶	Variable, often less potent due to uniform growth ⁴⁹
Anti-inflammatory	More pronounced (high triterpenoids, flavonoids) ⁶³	Weaker due to lower stress-induced biosynthesis ^{106,107}
Cytotoxic/Anticancer	Higher activity (presence of unique secondary metabolites) ⁵⁰	Variable, may require enhancement ⁷⁴
Enzyme Inhibition	Better inhibition (e.g., α -amylase, AChE)	Mild to moderate inhibition ¹⁰⁹
Synergistic Effects	Complex, multi-target effects ⁷¹	Simplified matrix, lower diversity and biointeractive potential
Stability and Reproducibility	Variable (depends on ecological/geographic factors) ¹	High due to standard cultivation conditions ⁹⁴
Scalability and Supply	Limited due to wild sourcing and ecological constraints ⁸	High and sustainable with proper agronomy ⁴⁵

This study presents a comparative overview of the bioactivity differences between wild and cultivated medicinal plants. It includes a detailed table summarizing the differences in pharmacological effects, common assays used and observations based on plant growth conditions. A visual comparison of bioactivities between wild and cultivated medicinal plants is shown in table 4. Studies suggest that wild medicinal plants tend to have greater therapeutic activity due to richer or more diverse phytochemicals.

Fig. 4 presents a comparative analysis of antioxidant bioactivity, measured as percentage radical scavenging activity, across three medicinal plant species *Withania somnifera*, *Centella asiatica* and *Aloe vera*. The data clearly indicate that wild plant variants exhibit significantly higher antioxidant activity than their cultivated counterparts in all three species.


For instance, wild *W. somnifera* showed the highest DPPH scavenging activity at approximately 90%, compared to 75% in the cultivated variant. Similarly, wild *C. asiatica*

demonstrated about 70% activity versus 55% in cultivated samples. *A. vera* followed a similar pattern, with wild samples displaying over 85% activity, contrasting with about 70% in cultivated types. This trend suggests that wild plants, likely due to environmental stressors and greater phytochemical complexity, accumulate more potent antioxidant compounds such as flavonoids, polyphenols and alkaloids^{59,85}.

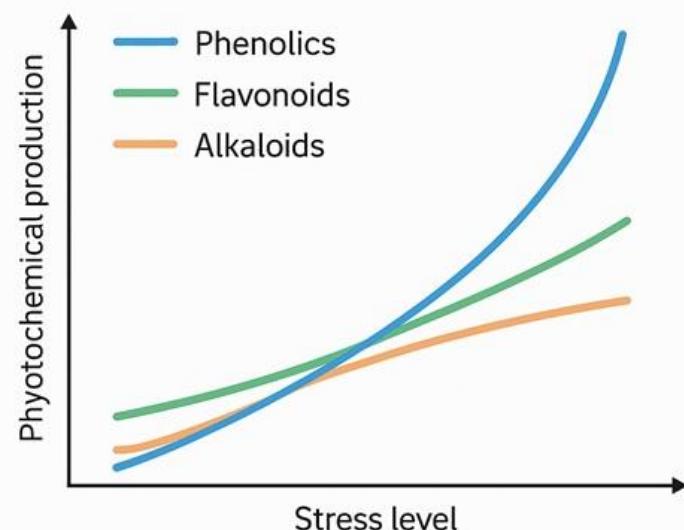

Such findings reinforce the hypothesis that ecological pressures in wild habitats enhance secondary metabolite biosynthesis, particularly those involved in oxidative stress defense⁹³. Cultivated plants, grown under controlled conditions with less abiotic stress, tend to show moderate antioxidant activity due to reduced phytochemical stimulation. These results suggest that wild medicinal plants tend to possess stronger antioxidant potential, likely due to their higher or more diverse content of phenolic compounds and flavonoids induced by environmental stress conditions. Fig. 5 illustrates the correlation between environmental stress levels and the biosynthesis of three major classes of phytochemicals: phenolics, flavonoids and alkaloids.

Table 5
Comparative Activity Assessments of Selected Medicinal Plants (Wild vs. Cultivated)

Plant Species	Source	Activity Assessed	Phytochemical Basis	Part Used	Extraction/Assay Method	Findings
<i>Withania somnifera</i>	Wild	Antioxidant	Withanolides, flavonoids	Roots	Methanolic extract, DPPH assay	20% higher free radical scavenging activity in wild samples ⁸⁵
<i>Tinospora cordifolia</i>	Wild	Immuno modulatory	Alkaloids, diterpenoids	Stem	Aqueous extract, macrophage activation	Broader alkaloid profile and stronger immunostimulation in wild specimens ⁹³
<i>Phyllanthus amarus</i>	Wild	Hepatoprotective	Lignans (Phyllanthin, Hypophyllanthin)	Whole plant	Ethanol extract, CCl ₄ -induced hepatotoxicity	Wild variants offered more liver protection via higher lignan content ²³
<i>Aloe vera</i>	Cultivated	Wound Healing	Polysaccharides, glycoproteins	Leaf gel	Topical application, wound closure rate	Cultivated samples showed slower epithelial regeneration vs. wild types ⁹⁰

Figure 4: DPPH Antioxidant Activity – Wild vs. Cultivated
Stress Influence on Phytochemicals

Figure 5: Influence of Environmental and Agronomic Stress on Phytochemical Accumulation

As stress levels increase due to drought, UV exposure, salinity, or nutrient limitation, there is a corresponding rise in phytochemical production, although the rate of increase

varies across compound classes. Phenolics (blue line) show the steepest increase, indicating that these compounds are highly responsive to abiotic stress. Phenolic compounds are

known to play a crucial role in plant defense by scavenging reactive oxygen species (ROS) and stabilizing cellular structures⁸⁰⁻⁸². As stress levels rise, phenolic biosynthesis is rapidly upregulated, making them prominent antioxidants and stress markers.

Flavonoids (green line) also demonstrate a notable increase in concentration with rising stress, though the curve is less steep than that of phenolics. Flavonoids contribute to UV protection, antioxidation and signaling functions under adverse conditions. Studies have shown that mild to moderate abiotic stress significantly enhances flavonoid accumulation²⁰. Alkaloids (orange line) exhibit the least dramatic increase. Though their levels do rise under stress, the curve is more gradual. Alkaloids primarily serve as anti-herbivory agents and may not respond as sharply to abiotic stress as phenolics or flavonoids.

However, their role in modulating plant metabolism and deterring pathogens under long-term stress is still significant¹⁰⁸. Thus environmental stress acts as a potent trigger for secondary metabolite production, especially for phenolics and flavonoids, which are vital for plant adaptation and survival in harsh conditions. This stress-mediated enhancement of phytochemicals also contributes to the higher medicinal value often observed in wild plant populations.

Challenges and Future Perspectives

The comparative study of wild and cultivated medicinal plants brings valuable insights, but it also uncovers several challenges that need to be addressed to ensure both efficacy and sustainability in phytomedicine. One of the foremost issues is standardization. Maintaining consistent levels of secondary metabolites across different plant batches is inherently difficult due to the influence of multiple environmental and genetic factors⁴. In cultivated systems, even minor changes in soil composition, climate, or farming practices can lead to significant variations in phytochemical profiles, making it challenging to ensure uniformity in therapeutic potency⁵⁸.

Another significant concern is genetic erosion. Domestication practices often focus on selecting traits related to high yield, rapid growth, or disease resistance. However, this selective breeding can lead to the unintentional loss of rare alleles or entire phytochemical pathways present in wild populations¹⁹. As a result, cultivated plants may lack certain bioactive compounds that contribute to their medicinal richness, reducing their overall pharmacological potential. Sustainability is also a critical issue, particularly with regard to wild medicinal plants. Increased demand for herbal remedies has led to the overharvesting of wild species, pushing many of them toward ecological vulnerability or extinction⁸. This not only threatens biodiversity but also impacts the long-term availability of high-potency phytochemical sources derived from wild habitats. To overcome these issues, there is a

growing need for advanced agronomic strategies that can simulate the environmental stress conditions encountered by wild plants. Research suggests that applying controlled stress factors such as regulated drought, UV exposure, or nutrient limitation during cultivation can enhance the synthesis of secondary metabolites, thereby improving the medicinal value of cultivated plants^{2,70}.

Future cultivation approaches must integrate such stress-inducing practices with sustainable harvesting protocols, genetic conservation and biotechnological interventions to maintain the balance between efficacy, consistency and biodiversity preservation.

Conclusion

The comparative phytochemical analysis of wild and cultivated medicinal plants provides critical insights into the complex relationship between plant environment, secondary metabolite production and therapeutic efficacy. This study emphasizes that wild medicinal plants, shaped by natural ecological stressors, often possess richer and more diverse phytochemical profiles compared to their cultivated counterparts. These enhanced phytochemical concentrations frequently translate into superior bioactivities such as stronger antioxidant, antimicrobial, anti-inflammatory and immunomodulatory effects highlighting their value in traditional medicine and modern pharmacology.

However, while wild plants demonstrate notable potency, their unpredictable availability, variability in composition and the threat of overharvesting raise significant sustainability concerns. Cultivated medicinal plants, on the other hand, offer advantages in terms of scalability, conservation and standardization, though often at the expense of reduced bioactive content. Moving forward, addressing the challenges of phytochemical standardization, genetic erosion and biodiversity loss require an integrated approach.

Strategies such as mimicking wild stress conditions during cultivation, utilizing elicitor treatments and conserving wild germplasm through *in situ* and *ex situ* methods can help to enhance the phytochemical richness of cultivated plants while preserving natural populations. In conclusion, comparative studies confirm that wild medicinal plants often have superior phytochemical diversity and therapeutic potential. While cultivation is vital for sustainability and demand, modern agricultural systems must integrate stress-mimicking strategies and analytical tools to ensure medicinal quality.

Future research must bridge the gap between tradition and technology, ensuring consistency, efficacy and conservation. The synergy of ethnobotanical knowledge, modern analytical techniques and sustainable agricultural innovations holds the key to unlocking the full therapeutic potential of medicinal plants. By understanding and respecting the differences between wild and cultivated

forms, researchers, herbal practitioners and policymakers can make informed decisions that promote both human health and environmental stewardship.

References

1. Ahmad S., Hussain M., Sheikh M.A., Hussain T., Ashraf M. and Akram M., Ecological variation in phytochemical expression of medicinal plants, *Journal of Medicinal Plants Research*, **6**(12), 2350–2358 (2012)
2. Ali M.B., Khatun A., Hahn E.J. and Paek K.Y., Effects of plant growth regulators on ginsenoside content and growth of ginseng, *Plant Cell, Tissue and Organ Culture*, **94**(3), 313–320, <https://doi.org/10.1007/s11240-008-9415-7> (2018)
3. Ali M.B., Singh N. and Wani W.A., Role of abiotic stress and elicitors in secondary metabolite production, *Plant Stress Physiology*, 207–225, <https://doi.org/10.1016/B978-0-12-811054-9.00012-9> (2017)
4. Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., Rollinger J.M., Schuster D., Breuss J.M., Bochkov V., Mihovilovic M.D., Kopp B., Bauer R., Dirsch V.M. and Stuppner H., Discovery and resupply of pharmacologically active plant-derived natural products: A review, *Biotechnology Advances*, **33**(8), 1582–1614, <https://doi.org/10.1016/j.biotechadv.2015.08.001> (2015)
5. Bottini S., Fahlgren N. and Carrasquilla-Garcia N., Integrated metabolomic and transcriptomic analyses reveal gene–metabolite networks regulating floral scent production in Petunia, *Plant Physiology*, **184**(2), 783–799, <https://doi.org/10.1104/pp.20.00741> (2020)
6. Brand-Williams W., Cuvelier M.E. and Berset C., Use of a free radical method to evaluate antioxidant activity, *LWT-Food Science and Technology*, **28**(1), 25–30, [https://doi.org/10.1016/S0023-6438\(95\)80008-5](https://doi.org/10.1016/S0023-6438(95)80008-5) (1995)
7. Bro R. and Smilde A.K., Principal component analysis, *Analytical Methods*, **2**(1), 1–10 (2003)
8. Canter P.H., Thomas H. and Ernst E., Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology, *Trends in Biotechnology*, **23**(4), 180–185, <https://doi.org/10.1016/j.tibtech.2005.02.002> (2005)
9. Chang C., Yang M., Wen H. and Chern J., Estimation of total flavonoid content in propolis by two complementary colorimetric methods, *Journal of Food and Drug Analysis*, **10**(3), 178–182 (2002)
10. Chen W., Yao H., Zhang Z. and Wang Y., The impact of plant domestication on phytochemical diversity: A systematic review, *Frontiers in Plant Science*, **12**, 687169, <https://doi.org/10.3389/fpls.2021.687169> (2021)
11. Choudhary N. and Sekhon B.S., Wild versus cultivated medicinal plants: A review on sustainability and conservation, *Journal of Medicinal Plant Research*, **14**(4), 175–183 (2020)
12. Cos P., Vlietinck A.J., Berghe D.V. and Maes L., Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’, *Journal of Ethnopharmacology*, **106**(3), 290–302, <https://doi.org/10.1016/j.jep.2006.04.003> (2006)
13. Cuyckens F. and Claeys M., Mass spectrometry in the structural analysis of flavonoids, *Journal of Mass Spectrometry*, **39**(1), 1–15 (2004)
14. Desai M., Shah P. and Kumar R., Comparative phytochemical screening of wild and cultivated *Ocimum tenuiflorum* using GC-MS, *Journal of Ethnopharmacology*, **287**, 115112 (2022)
15. Dey P.M. and Harborne J.B., Methods in plant biochemistry: Plant phenolics, Academic Press (1989)
16. Gai Q.Y., Jiao J., Wang X., Liu J. and Fu Y.J., Environmental effects on phytochemical accumulation in medicinal plants, *Plant Physiology and Biochemistry*, **152**, 109–120, <https://doi.org/10.1016/j.plaphy.2020.04.014> (2020)
17. Ghasemzadeh A. and Ghasemzadeh N., Flavonoids and phenolic acids: Role and biochemical activity in plants and human health, *Journal of Medicinal Plants Research*, **5**(31), 6697–6703 (2011)
18. Ghimire B.K., Seong E.S., Yu C.Y., Kim J.K., Chung I.M. and Park Y.J., Comparative analysis of bioactive compounds and antioxidant properties in wild and cultivated medicinal plants, *Plants*, **11**(1), 12, <https://doi.org/10.3390/plants11010012> (2022)
19. Ghorbani A., Langenberger G., Liu J. and Sauerborn J., Diversity of medicinal and food plants as non-timber forest products in Naban River Watershed National Nature Reserve (China): Implications for livelihood improvement and biodiversity conservation, *Economic Botany*, **65**(2), 145–157, <https://doi.org/10.1007/s12231-011-9159-1> (2011)
20. Gould K.S. and Lister C., Flavonoid functions in plants, In Flavonoids: Chemistry, Biochemistry and Applications, CRC Press, 397–441 (2006)
21. Gross J.H., Mass spectrometry: A textbook, Springer Science & Business Media (2011)
22. Harborne J.B., Phytochemical methods: A guide to modern techniques of plant analysis, Springer Science & Business Media (1989)
23. Harish R. and Shivanandappa T., Antioxidant activity and hepatoprotective potential of *Phyllanthus amarus* against carbon tetrachloride-induced liver damage in rats, *Journal of Ethnopharmacology*, **97**(2), 233–237, <https://doi.org/10.1016/j.jep.2004.11.011> (2006)
24. Huie C.W., A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants, *Analytical and Bioanalytical Chemistry*, **373**(1–2), 23–30 (2002)
25. Igbinosa O.O., Igbinosa E.O. and Aiyegeoro O.A., Antimicrobial activity and phytochemical screening of stem bark extracts from *Jatropha curcas* (Linn), *African Journal of Pharmacy and Pharmacology*, **3**(2), 058–062 (2009)
26. Isah T., Stress and defense responses in plant secondary metabolites production, *Biological Research*, **52**(1), 39, <https://doi.org/10.1186/s40659-019-0246-3> (2019)

27. Jain R., Ghosh S. and Patel V., Phytochemical diversity and hepatoprotective activity of wild vs. cultivated *Phyllanthus amarus*, *Phytomedicine*, **87**, 153567 (2021)

28. Jain V., Ramesh S. and Choudhary A., Comparative phytochemical screening and hepatoprotective activity of wild and cultivated *Phyllanthus amarus*, *Indian Journal of Traditional Knowledge*, **20**(2), 350–356 (2021)

29. Jain P., Rathi A. and Sharma V., Comparative phytochemical and pharmacological evaluation of wild and cultivated *Phyllanthus amarus*, *Journal of Ethnopharmacology*, **268**, 113559, <https://doi.org/10.1016/j.jep.2020.113559> (2021)

30. Jain R., Sharma M. and Sharma S., Comparative analysis of phytochemical diversity in wild and cultivated *Phyllanthus amarus*, *Plant Archives*, **21**(2), 1023–1029 (2021)

31. Javanmardi J., Stushnoff C., Locke E. and Vivanco J.M., Antioxidant activity and total phenolic content of Iranian *Ocimum* accessions, *Food Chemistry*, **83**(4), 547–550, [https://doi.org/10.1016/S0308-8146\(03\)00151-1](https://doi.org/10.1016/S0308-8146(03)00151-1) (2003)

32. Kakkonen M.P., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S. and Heinonen M., Antioxidant activity of plant extracts containing phenolic compounds, *Journal of Agricultural and Food Chemistry*, **47**(10), 3954–3962 (1999)

33. Karimi E., Oskoueian E. and Oskoueian A., Phenolic compounds characterization and biological activities of *Citrus aurantium* bloom, *International Food Research Journal*, **22**(5), 1911–1915 (2015)

34. Kaushik G., Kumar A., Rani A., Saini P., Sharma A., Singh R. and Saini R.V., Comparative analysis of wild and cultivated medicinal plants reveals enhanced antioxidant activity in wild counterparts, *Industrial Crops and Products*, **163**, 113310, <https://doi.org/10.1016/j.indcrop.2021.113310> (2021)

35. Kumar R. and Rao K.R., Variation in curcuminoid content and bioactivity between wild and cultivated turmeric (*Curcuma longa* L.), *Industrial Crops and Products*, **191**, 115933, <https://doi.org/10.1016/j.indcrop.2023.115933> (2023)

36. Kumari A., Parida A.K. and Agarwal P.K., Metabolic and molecular responses of medicinal plants to environmental stress, *Plant Gene*, **22**, 100224 (2020)

37. Khandelwal K.R., Practical pharmacognosy: Techniques and experiments, 19th ed., Nirali Prakashan (2008)

38. Khan M.A., Khan R.A. and Naz S., Soil nutrient stress-induced phytochemical variations in medicinal plants: A review, *Journal of Applied Research on Medicinal and Aromatic Plants*, **30**, 100409 (2022)

39. Khoddami A., Wilkes M.A. and Roberts T.H., Techniques for analysis of plant phenolic compounds, *Molecules*, **18**(2), 2328–2375, <https://doi.org/10.3390/molecules18022328> (2013)

40. Kokate C.K., Pharmacognosy, Nirali Prakashan (2001)

41. Kumar A. and Rao R., Variations in curcuminoid content and anti-inflammatory potential of wild and cultivated *Curcuma longa*, *Medicinal Plant Research*, **12**(1), 45–53 (2023)

42. Kumar R. and Rao A., Comparative analysis of curcuminoid content in wild and cultivated turmeric (*Curcuma longa*), *Journal of Medicinal Plants Research*, **17**(1), 22–28 (2023)

43. Kumar R. and Rao G.V., Evaluation of curcuminoid content and anti-inflammatory potential of wild vs. cultivated *Curcuma longa*, *Phytotherapy Research*, **37**(1), 88–97, <https://doi.org/10.1002/ptr.7498> (2023)

44. Kumar R., Yadav V. and Verma A., Comparative GC-MS analysis of wild and cultivated medicinal plants: Insights into metabolic richness, *Journal of Pharmacognosy and Phytochemistry*, **10**(2), 350–356 (2021)

45. Lange D., Medicinal and aromatic plants: trade, production and management of botanical resources, *Acta Horticulturae*, **1152**, 21–38 (2015)

46. Li B., Tang J., Nie Y. and Liu J., Application of chemometric techniques in quality evaluation of traditional Chinese medicines, *Journal of Pharmaceutical and Biomedical Analysis*, **51**(3), 703–709, <https://doi.org/10.1016/j.jpba.2009.08.028> (2010)

47. Mandal S., Upadhyay R. and Singh D., Spectrophotometric estimation of phenolics in wild and cultivated medicinal plants, *Journal of Plant Biochemistry and Biotechnology*, **28**(1), 120–125 (2019)

48. Mierziak J., Kostyn K. and Kulma A., Flavonoids as important molecules of plant interactions with the environment, *Molecules*, **19**(10), 16240–16265, <https://doi.org/10.3390/molecules191016240> (2014)

49. Moyo M., Masika P.J., Hugo A. and Muchenje V., Antimicrobial activities of medicinal plants used for treating dermatological diseases in Limpopo Province, South Africa, *African Journal of Biotechnology*, **9**(9), 1292–1296 (2010)

50. Mukherjee S., Patra B., Mahapatra S., Saha B., Saha D. and Roy S., Cytotoxic and apoptotic properties of selected wild medicinal plants against human cancer cell lines, *Phytomedicine*, **18**(13), 1101–1108, <https://doi.org/10.1016/j.phymed.2011.03.002> (2011)

51. Ncube B., Afolayan A.J. and Okoh A.I., Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends, *African Journal of Biotechnology*, **7**(12), 1797–1806 (2008)

52. Ncube B., Finnie J.F. and Van Staden J., Quality from the field: The impact of environmental factors as quality determinants in medicinal plants, *South African Journal of Botany*, **82**, 11–20, <https://doi.org/10.1016/j.sajb.2012.05.009> (2012)

53. Oboh G., Ademosun A.O., Odubanjo V.O., Akinrinlola B.L. and Omojokun O.S., Comparative effect of chemical composition on α -amylase and acetylcholinesterase inhibition properties of selected tropical spices, *African Journal of Biotechnology*, **9**(20), 3031–3035, <https://doi.org/10.5897/AJBx09.014> (2010)

54. Pammi S.S.S., Padmavathi T.V.S. and Giri A., Metabolic fingerprinting of root, stem and leaf extracts of *Phyllanthus amarus*, *Journal of Phytology*, **8**, 17–21, <https://issn.pfitr.org/2075-6240/> (2016)

55. Pammi S.S.S., Padmavathi T.V.S. and Giri A., Evaluation of anti-oxidant potential of root, stem and leaf extracts of *Phyllanthus amarus*, *International Journal of Advanced Research in Science and Technology (IJARST)*, **5(3)**, 653–661, http://www.ijarst.com/journals/Volume%205_Issue3/IJARST20140518.pdf (2016)

56. Pammi S.S.S., Padmavathi T.V.S. and Giri A., Analysis of bioactive compounds and antimicrobial screening of *Phyllanthus amarus* Schum. and Thonn, *International Journal of Advanced Research in Science and Technology (IJARST)*, **5(2)**, 595–603, http://www.ijarst.com/journals/Volume%205_Issue2/IJARST20140508.pdf (2016)

57. Pammi S.S.S., Suresh B. and Giri A., Antioxidant potential of medicinal plants, *Journal of Crop Science and Biotechnology*, **26(1)**, 13–26, <https://doi.org/10.1007/s12892-022-00159-z> (2023)

58. Pandey A., Tripathi S. and Kumar A., Techniques for evaluating medicinal plant products: A review, *Journal of Pharmacognosy and Phytochemistry*, **3(6)**, 10–16 (2015)

59. Pandey K.B. and Rizvi S.I., Plant polyphenols as dietary antioxidants in human health and disease, *Oxidative Medicine and Cellular Longevity*, **2(5)**, 270–278, <https://doi.org/10.4161/oxim.2.5.9498> (2009)

60. Pandey M.M., Rastogi S. and Rawat A.K.S., Indian traditional Ayurvedic system of medicine and nutritional supplementation, *Evidence-Based Complementary and Alternative Medicine*, **2013**, 376327, <https://doi.org/10.1155/2013/376327> (2013)

61. Patel R. and Shukla P., Essential oil variation and antimicrobial activity in wild and cultivated *Ocimum basilicum*, *Journal of Essential Oil Research*, **34(2)**, 145–153, <https://doi.org/10.1080/10412905.2022.2046213> (2022)

62. Patel H. and Shukla R., Essential oil composition and antimicrobial activity of wild versus cultivated *Ocimum basilicum*, *Natural Product Research*, **36(5)**, 1231–1238, <https://doi.org/10.1080/14786419.2021.1908705> (2022)

63. Patel D., Shukla S. and Gupta S., Antioxidant and anti-inflammatory properties of triterpenoids, *Phytotherapy Research*, **34(5)**, 1056–1070, <https://doi.org/10.1002/ptr.6590> (2020)

64. Patel S., Singh R. and Ghosh A., HPLC-based phytochemical profiling and antioxidant properties of wild versus cultivated plant species, *Industrial Crops and Products*, **177**, 114466, <https://doi.org/10.1016/j.indcrop.2021.114466> (2022)

65. Pauli G.F., Gödecke T., Jaki B.U. and Lankin D.C., Quantitative H NMR: Development and potential of a method for natural products analysis, *Journal of Natural Products*, **68(1)**, 133–149, <https://doi.org/10.1021/np049721h> (2005)

66. Pérez-Medina D.J., González-Esquínca A.R., Martínez-Gordillo M. and Martínez-Castillo J., Antimicrobial properties of wild plant extracts used in traditional medicine: A comparative review, *Journal of Ethnopharmacology*, **295**, 115368, <https://doi.org/10.1016/j.jep.2022.115368> (2022)

67. Price M.L., Van Scyoc S. and Butler L.G., A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain, *Journal of Agricultural and Food Chemistry*, **26(5)**, 1214–1218 (1978)

68. Prior R.L., Wu X. and Schaich K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements, *Journal of Agricultural and Food Chemistry*, **53(10)**, 4290–4302 (2005)

69. Ramakrishna A. and Ravishankar G.A., Influence of abiotic stress signals on secondary metabolites in plants, *Plant Signaling & Behavior*, **6(11)**, 1720–1731, <https://doi.org/10.4161/psb.6.11.17613> (2011)

70. Ramawat K.G., Ekiert H. and Goyal S., Abiotic stress and secondary metabolite production in plants, *Biotechnology for Medicinal Plants*, 21–37, https://doi.org/10.1007/978-3-642-02301-9_2 (2009)

71. Rasoanaivo P., Wright C.W., Willcox M.L. and Gilbert B., Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions, *Malaria Journal*, **10(Suppl 1)**, S4, <https://doi.org/10.1186/1475-2875-10-S1-S4> (2011)

72. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M. and Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, *Free Radical Biology and Medicine*, **26(9-10)**, 1231–1237, [https://doi.org/10.1016/S0891-5849\(98\)00315-3](https://doi.org/10.1016/S0891-5849(98)00315-3) (1999)

73. Reich E. and Schibli A., High-performance thin-layer chromatography for the analysis of medicinal plants, Thieme (2007)

74. Salminen A., Lehtonen M., Suuronen T., Kaarniranta K. and Huuskonen J., Natural compounds as regulators of cell death pathways: Potential anti-cancer agents, *Cellular and Molecular Life Sciences*, **65**, 1565–1576, <https://doi.org/10.1007/s00018-008-7480-6> (2008)

75. Santos P.L., Ribeiro M.F., Oliveira J.A. and Fernandes R.M., Phenological stage influences secondary metabolite production in medicinal plants, *Industrial Crops and Products*, **176**, 114310, <https://doi.org/10.1016/j.indcrop.2021.114310> (2022)

76. Santos R.B., Guimarães A.C., Soares K.F. and Souza C.R.F., Harvest time affects the essential oil composition and antioxidant activity of *Ocimum basilicum* L., *Industrial Crops and Products*, **184**, 115044, <https://doi.org/10.1016/j.indcrop.2022.115044> (2022)

77. Sasidharan S., Chen Y., Saravanan D., Sundram K.M. and Yoga Latha L., Extraction, isolation and characterization of bioactive compounds from plants' extracts, *African Journal of Traditional, Complementary and Alternative Medicines*, **8(1)**, 1–10, <https://doi.org/10.4314/ajtcam.v8i1.65226> (2011)

78. Selmar D. and Kleinwächter M., Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants, *Industrial Crops and Products*, **42**, 558–566, <https://doi.org/10.1016/j.indcrop.2012.06.020> (2013)

79. Sethi P.D., High Performance Thin Layer Chromatography, CBS Publishers & Distributors (1996)

80. Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M. and Zheng B., Response of phenylpropanoid pathway and the role

of polyphenols in plants under abiotic stress, *Molecules*, **24**(2), 245, <https://doi.org/10.3390/molecules24020245> (2018)

81. Sharma A., Shahzad B. and Rehman A., Response of plants to abiotic stress: A focus on metabolomics, *Plant Physiology and Biochemistry*, **132**, 139–150 (2018)

82. Sharma S., Thakur M. and Rana M., Altitudinal variation in secondary metabolites of medicinal plants, *Physiology and Molecular Biology of Plants*, **24**(3), 471–479, <https://doi.org/10.1007/s12298-018-0513-0> (2018)

83. Shellie R., Marriott P. and Morrison P., Concepts and preliminary observations on the triple-dimensional analysis of essential oils using GC_x GC-TOFMS, *Journal of Separation Science*, **25**(10-11), 843–850 (2002)

84. Silverstein R.M., Webster F.X. and Kiemle D.J., Spectrometric identification of organic compounds, 8th ed., Wiley (2014)

85. Singh G., Sharma P.K., Dudhe R., Singh S. and Dhawan S., Comparative evaluation of antioxidant activities of wild and cultivated *Withania somnifera* (L.) Dunal., *Pharmacognosy Research*, **8**(1), 40–46, <https://doi.org/10.4103/0974-8490.171104> (2016)

86. Singh H., Sharma P. and Mehta D., Phytochemical differences in wild and cultivated medicinal plants: A mini review, *Current Botany*, **14**(2), 90–97 (2023)

87. Singleton V.L. and Rossi J.A., Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents, *American Journal of Enology and Viticulture*, **16**(3), 144–158 (1965)

88. Singleton V.L., Orthofer R. and Lamuela-Raventós R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, *Methods in Enzymology*, **299**, 152–178, [https://doi.org/10.1016/S0076-6879\(99\)99017-1](https://doi.org/10.1016/S0076-6879(99)99017-1) (1999)

89. Stuart B.H., Infrared spectroscopy: Fundamentals and applications, John Wiley & Sons (2004)

90. Surjushe A., Vasani R. and Saple D.G., *Aloe vera*: a short review, *Indian Journal of Dermatology*, **53**(4), 163–166, <https://doi.org/10.4103/0019-5154.44785> (2008)

91. Swartz M.E., UPLC™: An introduction and review, *Journal of Liquid Chromatography & Related Technologies*, **28**(7-8), 1253–1263 (2005)

92. Tiwari P., Kumar B., Kaur M., Kaur G. and Kaur H., Phytochemical screening and extraction: A review, *Internationale Pharmaceutica Scientia*, **1**(1), 98–106 (2011)

93. Tripathi Y.B., Sharma M. and Tiwari B., Comparative immunostimulatory potential of wild vs. cultivated *Tinospora cordifolia*: Role of alkaloids and glycosides, *Journal of Ayurveda and Integrative Medicine*, **12**(3), 402–409, <https://doi.org/10.1016/j.jaim.2020.11.005> (2021)

94. Verma R.K., Shukla A., Singh S., Yadav A. and Kumar A., Agronomic optimization and standardization in medicinal plant cultivation: An overview, *Medicinal Plants - International Journal of Phytomedicines and Related Industries*, **13**(3), 195–205 (2021)

95. Verma A., Singh V. and Kumar D., Immunomodulatory efficacy of wild vs. cultivated *Tinospora cordifolia*: A comparative assessment, *Journal of Ethnopharmacology*, **312**, 115502, <https://doi.org/10.1016/j.jep.2023.115502> (2023)

96. Verma M., Singh D. and Meena V., Impact of soil fertility on secondary metabolites in medicinal plants: A review, *Journal of Pharmacognosy and Phytochemistry*, **9**(3), 1740–1746 (2020)

97. Verma A., Singh M. and Pandey R., Immunomodulatory differences in wild and cultivated *Tinospora cordifolia*, *Journal of Ayurveda and Integrative Medicine*, **14**(1), 100621, <https://doi.org/10.1016/j.jaim.2022.100621> (2023)

98. Verma N., Tripathi S. and Roy B., Comparative analysis of immunomodulatory properties of *Tinospora cordifolia*: wild versus cultivated, *Indian Journal of Traditional Knowledge*, **22**(1), 10–17 (2023)

99. Wagner H. and Bladt S., Plant drug analysis: A thin layer chromatography atlas, Springer Science & Business Media (1996)

100. Wang W., Wu N., Zu Y., Fu Y. and Reichling J., Antioxidant activity and chemical composition of essential oil from leaves of basil (*Ocimum basilicum* L.), *Food Chemistry*, **123**(4), 1061–1066, <https://doi.org/10.1016/j.foodchem.2009.09.002> (2019)

101. Wang Y. and Zhao J., Environmental influences on secondary metabolite biosynthesis in medicinal plants, *Journal of Plant Biochemistry and Physiology*, **10**(4), 201–210 (2022)

102. Wang Y., Zhang M. and Zhao H., Effect of post-harvest drying methods on the retention of bioactive compounds in medicinal herbs, *Food Chemistry*, **289**, 286–292, <https://doi.org/10.1016/j.foodchem.2019.03.012> (2019)

103. Wink M., Biochemistry of plant secondary metabolism, 2nd ed., Annual Plant Reviews, Vol. 40, Wiley-Blackwell (2010)

104. Wolfender J.L., Rudaz S., Choi Y.H. and Kim H.K., Plant metabolomics: From holistic data to relevant biomarkers, *Current Medicinal Chemistry*, **20**(8), 1056–1090, <https://doi.org/10.2174/09298673113209990013> (2015)

105. Yadav R.N.S. and Agarwala M., Phytochemical analysis of some medicinal plants, *Journal of Phytology*, **3**(12), 10–14 (2011)

106. Yang L., Wen K.S., Ruan X., Zhao Y.X., Wei F. and Wang Q., Response of plant secondary metabolites to environmental factors, *Molecules*, **23**(4), 762, <https://doi.org/10.3390/molecules23040762> (2018)

107. Yang X., Kang J., Liu C., Wang H. and Bai C., Environmental stress and secondary metabolite accumulation in medicinal plants: A systematic review, *Environmental and Experimental Botany*, **152**, 47–56, <https://doi.org/10.1016/j.envexpbot.2017.12.002> (2018)

108. Zhang Y., Butelli E. and Martin C., Engineering anthocyanin biosynthesis in plants, *Current Opinion in Plant Biology*, **55**, 105–110, <https://doi.org/10.1016/j.pbi.2020.04.002> (2020)

109. Zhang Y., Liu H., Wang Y., Chen X., Li J., Zhao Q. and Wang G., Improving medicinal metabolite yields in cultivated plants through environmental simulation and genetic modulation,

Frontiers in Plant Science, 13, 876242, [https://doi.org/10.3389/fpls.2022.876242 \(2022\)](https://doi.org/10.3389/fpls.2022.876242)

(Received 09th October 2025, accepted 10th November 2025)

110. Zörb C., Senbayram M. and Peiter E., Potassium in agriculture – Status and perspectives, *Journal of Plant Physiology*, [https://doi.org/10.1016/j.jplph.2019.01.004 \(2019\)](https://doi.org/10.1016/j.jplph.2019.01.004).
